Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Redox Biol ; 69: 102973, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052107

ABSTRACT

Ferroptosis is iron-dependent and regulates necrosis caused by lipid peroxidation and mitochondrial damage. Recent evidence has revealed an emerging role for ferroptosis in the pathophysiology of acute kidney injury (AKI). Sulfide:quinone oxidoreductase (SQOR) is a mitochondrial inner membrane protein highly expressed in the renal cortex. However, the effects of SQOR on ferroptosis and AKI have not been elucidated. In this study, we evaluated the effects of SQOR in several AKI models. We observed a rapid decrease in SQOR expression after cisplatin stimulation in both in vivo and in vitro models. SQOR-deletion mice exhibit exacerbated kidney impairment and ferroptosis in renal tubular epithelial cells following cisplatin injury. Additionally, our results showed that the overexpression of SQOR or ADT-OH (the slow-releasing H2S donor) preserved renal function in the three AKI mouse models. These effects were evidenced by lower levels of serum creatinine (SCr), blood urea nitrogen (BUN), renal neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule 1 (KIM-1). Importantly, SQOR knockout significantly aggravates cisplatin-induced ferroptosis by promoting mitochondrial dysfunction in renal tubular epithelial cells (RTECs). Moreover, online database analysis combined with our study revealed that SYVN1, an upregulated E3 ubiquitin ligase, may mediate the ubiquitin-mediated degradation of SQOR in AKI. Consequently, our results suggest that SYVN1-mediated ubiquitination degradation of SQOR may induce mitochondrial dysfunction in RTECs, exacerbating ferroptosis and thereby promoting the occurrence and development of AKI. Hence, targeting the SYVN1-SQOR axis could be a potential therapeutic strategy for AKI treatment.


Subject(s)
Acute Kidney Injury , Ferroptosis , Mitochondrial Diseases , Mice , Animals , Cisplatin/adverse effects , Acute Kidney Injury/etiology , Oxidoreductases , Quinones , Sulfides
2.
Front Med ; 17(5): 972-992, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37507636

ABSTRACT

Owing to the increasing incidence and prevalence of inflammatory bowel disease (IBD) worldwide, effective and safe treatments for IBD are urgently needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays an important role in inflammation. To date, H2S-releasing agents are viewed as potential anti-inflammatory drugs. The slow-releasing H2S donor 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), known as a potent therapeutic with chemopreventive and cytoprotective properties, has received attention recently. Here, we reported its anti-inflammatory effects on dextran sodium sulfate (DSS)-induced acute (7 days) and chronic (30 days) colitis. We found that ADT-OH effectively reduced the DSS-colitis clinical score and reversed the inflammation-induced shortening of colon length. Moreover, ADT-OH reduced intestinal inflammation by suppressing the nuclear factor kappa-B pathway. In vivo and in vitro results showed that ADT-OH decreased intestinal permeability by increasing the expression of zonula occludens-1 and occludin and blocking increases in myosin II regulatory light chain phosphorylation and epithelial myosin light chain kinase protein expression levels. In addition, ADT-OH restored intestinal microbiota dysbiosis characterized by the significantly increased abundance of Muribaculaceae and Alistipes and markedly decreased abundance of Helicobacter, Mucispirillum, Parasutterella, and Desulfovibrio. Transplanting ADT-OH-modulated microbiota can alleviate DSS-induced colitis and negatively regulate the expression of local and systemic proinflammatory cytokines. Collectively, ADT-OH is safe without any short-term (5 days) or long-term (30 days) toxicological adverse effects and can be used as an alternative therapeutic agent for IBD treatment.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Mice , Animals , Intestinal Barrier Function , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammation , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal
3.
Cancer Med ; 12(16): 17193-17211, 2023 08.
Article in English | MEDLINE | ID: mdl-37492969

ABSTRACT

BACKGROUND: Colorectal cancer is one of the most prevalent cancers in the world, but the research on its prevention, early diagnosis and treatment is still a major challenge in clinical oncology. Thus, there is a pressing requirement to find effective strategies to improve the survival of colon cancer patients. METHODS: Celecoxib has been accounted to be an effective antitumor drug, but may exhibit significant side effects. In recent studies, 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), one of the most commonly used reagents for the synthesis of sustained-release H2 S donors, has also been reported to inhibit cancer progression by affecting processes such as cell cycle, angiogenesis, and apoptosis. Therefore, we evaluated the therapeutic effect of the combination of ADT-OH and celecoxib on colorectal cancer through in vitro and in vivo, hoping to achieve better therapeutic effect and reduce the effect of celecoxib on gastric injury through exogenous administration of H2 S. RESULTS: Our results demonstrated that ADT-OH combined with celecoxib synergistically inhibited the proliferation and migration ability of human colorectal cancer HCT116 cells, altered cell cycle and cytoskeleton, increased intracellular reactive oxygen species (ROS), and promoted cell apoptosis. Noteworthy, in vivo studies also indicated the excellent antitumor therapeutic effect of the combination therapy without apparent toxicity. CONCLUSIONS: In general, our results provide a reasonable combination strategy of low-dose ADT-OH and celecoxib in the preclinical application of colorectal cancer.


Subject(s)
Colonic Neoplasms , Thiones , Humans , Celecoxib/pharmacology , Celecoxib/therapeutic use , Thiones/pharmacology , Thiones/therapeutic use , Colonic Neoplasms/drug therapy , Apoptosis , Cell Proliferation , Cell Line, Tumor
4.
Int J Biol Macromol ; 221: 1077-1092, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36113587

ABSTRACT

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing, transactivation of gene expression, and regulation of protein translation. As a core component of the hnRNP complex in mammalian cells, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNP A2B1) participates in and coordinates various molecular events. Given its regulatory role in inflammation and cancer progression, hnRNP A2B1 has become a novel player in immune response, inflammation, and cancer development. Concomitant with these new roles, a surprising number of mechanisms deemed to regulate hnRNP A2B1 functions have been identified, including post-translational modifications, changes in subcellular localization, direct interactions with multiple DNAs, RNAs, and proteins or the formation of complexes with them, which have gradually made hnRNP A2B1 a molecular target for multiple drugs. In light of the rising interest in the intersection between cancer and inflammation, this review will focus on recent knowledge of the biological roles of hnRNP A2B1 in cancer, immune response, and inflammation.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group A-B , Neoplasms , Animals , Humans , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/chemistry , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , RNA/metabolism , Neoplasms/genetics , Inflammation/genetics , Mammals/genetics
5.
Acta Pharmacol Sin ; 43(7): 1829-1842, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34795411

ABSTRACT

Hydrogen sulfide (H2S) is widely recognized as the third endogenous gas signaling molecule and may play a key role in cancer biological processes. ADT-OH (5-(4-hydroxyphenyl)-3H-1,2-dithiocyclopentene-3-thione) is one of the most widely used organic donors for the slow release of H2S and considered to be a potential anticancer compound. In this study, we investigated the antimetastatic effects of ADT-OH in highly metastatic melanoma cells. A tail-vein-metastasis model was established by injecting B16F10 and A375 cells into the tail veins of mice, whereas a mouse footpad-injection model was established by injecting B16F10 cells into mouse footpads. We showed that administration of ADT-OH significantly inhibited the migration and invasion of melanoma cells in the three different animal models. We further showed that ADT-OH dose-dependently inhibited the migration and invasion of B16F10, B16F1 and A375 melanoma cells as evaluated by wound healing and Transwell assays in vitro. LC-MS/MS and bioinformatics analyses revealed that ADT-OH treatment inhibited the EMT process in B16F10 and A375 cells by reducing the expression of FAK and the downstream response protein Paxillin. Overexpression of FAK reversed the inhibitory effects of ADT-OH on melanoma cell migration. Moreover, after ADT-OH treatment, melanoma cells showed abnormal expression of the H2S-producing enzymes CSE/CBS and the AKT signaling pathways. In addition, ADT-OH significantly suppressed the proliferation of melanoma cells. Collectively, these results demonstrate that ADT-OH inhibits the EMT process in melanoma cells by suppressing the CSE/CBS and FAK signaling pathways, thereby exerting its antimetastatic activity. ADT-OH may be used as an antimetastatic agent in the future.


Subject(s)
Melanoma , Thiones , Animals , Cell Line, Tumor , Cell Movement , Chromatography, Liquid , Focal Adhesion Kinase 1/metabolism , Melanoma/drug therapy , Mice , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/prevention & control , Paxillin , Signal Transduction , Skin Neoplasms , Tandem Mass Spectrometry , Melanoma, Cutaneous Malignant
6.
Front Pharmacol ; 12: 714365, 2021.
Article in English | MEDLINE | ID: mdl-34630090

ABSTRACT

Adenylate kinase 2 (AK2) is a wide-spread and highly conserved protein kinase whose main function is to catalyze the exchange of nucleotide phosphate groups. In this study, we showed that AK2 regulated tumor cell metastasis in lung adenocarcinoma. Positive expression of AK2 is related to lung adenocarcinoma progression and poor survival of patients. Knockdown or knockout of AK2 inhibited, while overexpression of AK2 promoted, human lung adenocarcinoma cell migration and invasion ability. Differential proteomics results showed that AK2 might be closely related to epithelial-mesenchymal transition (EMT). Further research indicated that AK2 regulated EMT occurrence through the Smad-dependent classical signaling pathways as measured by western blot and qPCR assays. Additionally, in vivo experiments showed that AK2-knockout in human lung tumor cells reduced their EMT-like features and formed fewer metastatic nodules both in liver and in lung tissues. In conclusion, we uncover a cancer metastasis-promoting role for AK2 and provide a rationale for targeting AK2 as a potential therapeutic approach for lung cancer.

7.
Front Immunol ; 12: 727664, 2021.
Article in English | MEDLINE | ID: mdl-35003056

ABSTRACT

Inflammatory bowel disease (IBD), such as Crohn's disease and ulcerative colitis, is a complex disease involving genetic, immune, and microbiological factors. A variety of animal models of IBD have been developed to study the pathogenesis of human IBD, but there is no model that can fully represent the complexity of IBD. In this study, we established two acute enteritis models by oral 3% DSS or intraperitoneal injection of anti-CD3 antibody, and two chronic enteritis models by feeding 3 cycles of 1.5% DSS or 3 months of the high-fat diet, respectively, and then examined the clinical parameters, histological changes, and cytokine expression profiles after the successful establishment of the models. Our results indicated that in 3% DSS-induced acute enteritis, the colorectal injury was significantly higher than that of the small intestine, while in anti-CD3 antibody-induced acute enteritis, the small intestine injury was significantly higher than that of colorectal damage. Besides, in the 1.5% DSS-induced chronic enteritis, the damage was mainly concentrated in the colorectal, while the damage caused by long-term HFD-induced chronic enteritis was more focused on the small intestine. Therefore, our work provides a reference for selecting appropriate models when conducting research on factors related to the pathogenesis of IBD or evaluating the potential diagnosis and treatment possibilities of pharmaceuticals.


Subject(s)
Antibodies/adverse effects , Antibodies/immunology , CD3 Complex/immunology , Dextran Sulfate/adverse effects , Diet, High-Fat/adverse effects , Disease Models, Animal , Enteritis/chemically induced , Acute Disease , Administration, Oral , Animals , Antibodies/administration & dosage , Chronic Disease , Cytokines/metabolism , Dextran Sulfate/administration & dosage , Enteritis/immunology , Enteritis/metabolism , Enteritis/pathology , Feces/microbiology , Injections, Intraperitoneal , Intestine, Large/injuries , Intestine, Large/metabolism , Intestine, Small/injuries , Intestine, Small/metabolism , Male , Mice , Mice, Inbred C57BL , Microbiota/genetics
8.
Ther Adv Med Oncol ; 12: 1758835920947976, 2020.
Article in English | MEDLINE | ID: mdl-32994805

ABSTRACT

BACKGROUND: Aspirin has recently emerged as an anticancer drug, but its therapeutic effect on lung cancer has been rarely reported, and the mechanism of action is still unclear. Long-term use of celecoxib in large doses causes serious side effects, and it is necessary to explore better ways to achieve curative effects. In this study, we evaluated the synergistic anticancer effects of celecoxib and aspirin in non-small cell lung cancer (NSCLC) cells. METHODS: In vitro, we evaluated the combined effects of celecoxib (40 µM) and aspirin (8 mM) on cell apoptosis, cell cycle distribution, cell proliferation, cell migration and signaling pathways. Furthermore, the effect of aspirin (100 mg/kg body weight) and celecoxib (50 mg/kg body weight) on the growth of xenograft tumors was explored in vivo. RESULTS: Our data suggest that cancer sensitivity to combined therapy using low concentrations of celecoxib and aspirin was higher than that of celecoxib or aspirin alone. Further research showed that the anti-tumor effect of celecoxib combined with aspirin was mainly produced by activating caspase-9/caspase-3, arresting cell cycle and inhibiting the ERK-MAPK signaling pathway. In addition, celecoxib alone or in combination with aspirin inhibited the migration and invasion of NSCLC cells by inhibiting MMP-9 and MMP-2 activity levels. Moreover, we identified GRP78 as a target protein of aspirin in NSCLC cells. Aspirin induced an endoplasmic reticulum stress response by inhibiting GRP78 activity. Furthermore, combination therapy also exhibited a better inhibitory effect on tumor growth in vivo. CONCLUSIONS: Our study provides a rationale for further detailed preclinical and potential clinical studies of the combination of celecoxib and aspirin for NSCLC therapy.

9.
Front Pharmacol ; 11: 1094, 2020.
Article in English | MEDLINE | ID: mdl-32792943

ABSTRACT

Celecoxib has potential as an effective antineoplastic agent, but it may exhibit side effects. Given the glucose-addicted properties of tumor cells, metformin is recognized for its inhibitory effect on oxidative phosphorylation. In the present study, we aimed to combine low dose of celecoxib with metformin to alleviate the side effects of nonsteroidal anti-inflammatory drugs (NSAIDs) and overcome potential drug resistance. We found that celecoxib combined with metformin obviously suppressed cell migration and proliferation and induced cell apoptosis. Most importantly, in vivo experiments revealed the superior antitumor efficacy of combination treatment with a low dosage of celecoxib (25 mg/kg/day) without apparent toxicity. Further study of the underlying mechanism revealed that the two drugs in combination caused ROS aggregation in NSCLC cells, leading to DNA double-strand breaks and increased expression of the tumor suppressor factor p53. Elevated p53 subsequently caused cell cycle arrest and cell proliferation inhibition. The presence of metformin also sensitized NSCLC cells to celecoxib-induced apoptosis by activating caspase-9, -8, -3, and -7, upregulating the pro-apoptotic proteins Bad and Bax, and downregulating the antiapoptotic proteins Bcl-xl and Bcl-2. Moreover, the superior anticancer effect of combined therapy was also due to suppression of Raf-MEK-ERK cascades and PI3K-AKT signaling, which is conducive to overcoming drug resistance. In addition, either celecoxib alone or in combination with metformin suppressed NSCLC cell migration and invasion by inhibiting FAK, N-cadherin, and matrix metalloproteinase-9 activities. Together, our study provided a rational combination strategy with a low dosage of celecoxib and metformin for preclinical cancer application.

10.
Protein Cell ; 11(11): 825-845, 2020 11.
Article in English | MEDLINE | ID: mdl-32144580

ABSTRACT

This study was designed to evaluate ERK5 expression in lung cancer and malignant melanoma progression and to ascertain the involvement of ERK5 signaling in lung cancer and melanoma. We show that ERK5 expression is abundant in human lung cancer samples, and elevated ERK5 expression in lung cancer was linked to the acquisition of increased metastatic and invasive potential. Importantly, we observed a significant correlation between ERK5 activity and FAK expression and its phosphorylation at the Ser910 site. Mechanistically, ERK5 increased the expression of the transcription factor USF1, which could transcriptionally upregulate FAK expression, resulting in FAK signaling activation to promote cell migration. We also provided evidence that the phosphorylation of FAK at Ser910 was due to ERK5 but not ERK1/2, and we then suggested a role for Ser910 in the control of cell motility. In addition, ERK5 had targets in addition to FAK that regulate epithelial-to-mesenchymal transition and cell motility in cancer cells. Taken together, our findings uncover a cancer metastasis-promoting role for ERK5 and provide the rationale for targeting ERK5 as a potential therapeutic approach.


Subject(s)
Cell Movement , Focal Adhesion Kinase 1/metabolism , Lung Neoplasms/enzymology , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 7/metabolism , Neoplasm Proteins/metabolism , A549 Cells , Animals , Epithelial-Mesenchymal Transition/genetics , Focal Adhesion Kinase 1/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mitogen-Activated Protein Kinase 7/genetics , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Proteins/genetics
11.
Cell Death Dis ; 11(1): 33, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949127

ABSTRACT

Hydrogen sulfide (H2S) is now widely considered the third endogenous gasotransmitter and plays critical roles in cancer biological processes. In this study, we demonstrate that 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), the most widely used moiety for synthesising slow-releasing H2S donors, induces melanoma cell death in vitro and in vivo. Consistent with previous reports, ADT-OH inhibited IκBɑ degradation, resulting in reduced NF-κB activation and subsequent downregulation of the NF-κB-targeted anti-apoptotic proteins XIAP and Bcl-2. More importantly, we found that ADT-OH suppressed the ubiquitin-induced degradation of FADD by downregulating the expression of MKRN1, an E3 ubiquitin ligase of FADD. In addition, ADT-OH had no significant therapeutic effect on FADD-knockout B16F0 cells or FADD-knockdown A375 cells. Based on these findings, we evaluated the combined effects of ADT-OH treatment and FADD overexpression on melanoma cell death in vivo using a mouse xenograft model. As expected, tumour-specific delivery of FADD through a recombinant Salmonella strain, VNP-FADD, combined with low-dose ADT-OH treatment significantly inhibited tumour growth and induced cancer cell apoptosis. Taken together, our data suggest that ADT-OH is a promising cancer therapeutic drug that warrants further investigation into its potential clinical applications.


Subject(s)
Apoptosis/drug effects , Carcinogenesis/pathology , Fas-Associated Death Domain Protein/metabolism , Hydrogen Sulfide/pharmacology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Thiones/pharmacology , Up-Regulation , Animals , Carcinogenesis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation/drug effects , Humans , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Proteolysis/drug effects , Ribonucleoproteins/metabolism , Thiones/chemistry , Ubiquitin/metabolism , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...